Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation). By contrast, multiple predator taxa with overlapping but complementary feeding niches can generate increased predation efficiency on their common prey (enemy complementarity). When viewed strictly from an ecological perspective, intraguild predation and enemy complementarity are opposing forces. However, from an evolutionary ecology perspective, predators facing strong intraguild predation may evolve traits that reduce their predation risk, possibly leading to niche complementarity between enemies; thus, selection from intraguild predation may lead to enemy complementarity rather than opposing it. As specialized predators that live in or on their hosts, parasitoids are subjected to intraguild predation from generalist predators that consume the parasitoids' hosts. The degree to which parasitoid–predator interactions are ruled by interference versus enemy complementarity has been debated. Here, we address this issue with field experiments in a forest community consisting of multiple species of trees, herbivorous caterpillars, parasitoids, ants, and birds. Our experiments and analyses found no interference effects, but revealed clear evidence for complementarity between parasitoids and birds (not ants). Parasitism rates by hymenopterans and dipterans were negatively associated with bird predation risk, and the variation in the strength of this negative association suggests that this enemy complementarity was due to parasitoid avoidance of intraguild predation. We further argue that avoidance of intraguild predation by parasitoids and other arthropod predators may explain enigmatic patterns in vertebrate–arthropod–plant food webs in a variety of terrestrial ecosystems.more » « less
-
Abstract In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species’ range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species. Experiments that plant replicated genotypes across a range of environments can characterize genotype-specific reaction norms; identify genetic, geographic, and climatic factors affecting variation in climate responses; and make predictions of climate responses across complex genetic and geographic landscapes. The North American hybrid zone ofPopulus trichocarpaandP. balsamiferarepresents a natural system in which reaction norms are likely to vary with underlying genetic variation that has been shaped by climate, geography, and introgression. Here, we leverage a dataset containing 45 clonal genotypes of varying ancestry from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range, including sites warmer than the natural species ranges. Growth and mortality were measured over two years, enabling us to model reaction norms for each genotype across these tested environments. Genomic variation associated with species ancestry and northern/southern regions significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade-off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates. Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape-level effects.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Summary Plastic responses of plants to their environment vary as a result of genetic differentiation within and among species. To accurately predict rangewide responses to climate change, it is necessary to characterize genotype‐specific reaction norms across the continuum of historic and future climate conditions comprising a species' range.The North American hybrid zone ofPopulus trichocarpaandPopulus balsamiferarepresents a natural system that has been shaped by climate, geography, and introgression. We leverage a dataset containing 44 clonal genotypes from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range. Growth and mortality were measured over 2 yr, enabling us to model reaction norms for each genotype across these tested environments.Species ancestry and intraspecific genomic variation significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade‐off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates.Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape‐level effects.more » « less
An official website of the United States government
